
9.LED_Dot_Matrix

Introduction
As the name suggests, an LED dot matrix is a matrix composed of LEDs. The lighting

up and dimming of the LEDs formulate different characters and patterns.

Hardware Required
 1 * Raspberry Pi

 1 * T-Extension Board

 1 * LED Dot Matrix

 1 * 40-pin Cable

 Several Jumper Wires

 1 * Breadboard

 2 * 74HC595

Principle

LED Dot Matrix
Generally, LED dot matrix can be categorized into two types: common cathode (CC)

and common anode (CA). They look much alike, but internally the difference lies.

You can tell by test. A CA one is used in this kit. You can see 788BS labeled at the

side.

See the figure below. The pins are arranged at the two ends at the back. Take the

label side for reference: pins on this end are pin 1-8, and oh the other are pin 9-16.

The external view:

9.LED_Dot_Matrix

Below the figures show their internal structure. You can see in a CA LED dot matrix,

ROW represents the anode of the LED, and COL is cathode; it's contrary for a CC

one.

One thing in common: for both types, pin 13, 3, 4, 10, 6, 11, 15, and 16 are all COL,

when pin 9, 14, 8, 12, 1, 7, 2, and 5 are all ROW. If you want to turn on the first LED

at the top left corner, for a CA LED dot matrix, just set pin 9 as High and pin 13 as

Low, and for a CC one, set pin 13 as High and pin 9 as Low. If you want to light up

the whole first column, for CA, set pin 13 as Low and ROW 9, 14, 8, 12, 1, 7, 2, and 5

as High, when for CC, set pin 13 as High and ROW 9, 14, 8, 12, 1, 7, 2, and 5 as Low.

Consider the following figures for better understanding.

The internal view:

Pin numbering corresponding to the above rows and columns:

COL 1 2 3 4 5 6 7 8

Pin No. 13 3 4 10 6 11 15 16

ROW 1 2 3 4 5 6 7 8

Pin No. 9 14 8 12 1 7 2 5

In addition, two 74HC595 chips are used here. One is to control the rows of the LED

dot matrix while the other, the columns.

Schematic Diagram
T-Board Name physical wiringPi BCM

GPIO17 Pin 11 0 17

9.LED_Dot_Matrix

GPIO18 Pin 12 1 18

GPIO27 Pin 13 2 27

Experimental Procedures

Step 1: Build the circuit.

Since the wiring is complicated, let's make it step by step.First, insert the T-Cobbler,

the LED dot matrix and two 74HC595 chips into breadboard. Connect the 3.3V and

GND of the T-Cobbler to holes on the two sides of the board, then hook up pin16 and

10 of the two 74HC595 chips to VCC, pin 13 and pin 8 to GND.

Note: In the Fritzing image above, the side with label is at the bottom.

Step 2:

9.LED_Dot_Matrix

Connect pin 11 of the two 74HC595 together, and then to GPIO27; then pin 12 of the

two chips, and to GPIO18; next, pin 14 of the 74HC595 on the left side to GPIO17

and pin 9 to pin 14 of the second 74HC595.

Step 3:

The 74HC595 on the right side is to control columns of the LED dot matrix. See the

table below for the mapping. Therefore, Q0-Q7 pins of the 74HC595 are mapped with

pin 13, 3, 4, 10, 6, 11, 15, and 16 respectively.

74HC595 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

LED Dot Matrix 13 3 4 10 6 11 15 16

Step 4:

Now connect the ROWs of the LED dot matrix. The 74HC595 on the left controls

ROW of the LED dot matrix. See the table below for the mapping. We can see,

Q0-Q7 of the 74HC595 on the left are mapped with pin 9, 14, 8, 12, 1, 7, 2, and 5

9.LED_Dot_Matrix

respectively.

74HC595 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

LED Dot Matrix 9 14 8 12 1 7 2 5

For C Language Users

Step 5: Go to the folder of code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/9.LED_Dot_Matrix

Step 6: Compile.

gcc 9.LED_Dot_Matrix.c -o LED_Dot_Matrix.out -lwiringPi

Step 7: Run.

sudo ./LED_Dot_Matrix.out

After the code runs, the LED dot matrix lights up and out row by row and column by

column.

Code

#include <wiringPi.h>

#include <stdio.h>

9.LED_Dot_Matrix

#define SDI 0 //serial data input

#define RCLK 1 //memory clock input(STCP)

#define SRCLK 2 //shift register clock input(SHCP)

unsigned char code_H[20] =

{0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff};

unsigned char code_L[20] =

{0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf

7,0xef,0xdf,0xbf,0x7f};

void init(void){

pinMode(SDI, OUTPUT);

pinMode(RCLK, OUTPUT);

pinMode(SRCLK, OUTPUT);

digitalWrite(SDI, 0);

digitalWrite(RCLK, 0);

digitalWrite(SRCLK, 0);

}

void hc595_in(unsigned char dat){

int i;

for(i=0;i<8;i++){

digitalWrite(SDI, 0x80 & (dat << i));

digitalWrite(SRCLK, 1);

delay(1);

9.LED_Dot_Matrix

digitalWrite(SRCLK, 0);

}

}

void hc595_out(){

digitalWrite(RCLK, 1);

delay(1);

digitalWrite(RCLK, 0);

}

int main(void){

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen

printf("setup wiringPi failed !");

return 1;

}

init();

while(1){

for(i=0;i<sizeof(code_H);i++){

hc595_in(code_L[i]);

hc595_in(code_H[i]);

hc595_out();

delay(100);

}

for(i=sizeof(code_H);i>=0;i--){

9.LED_Dot_Matrix

hc595_in(code_L[i]);

hc595_in(code_H[i]);

hc595_out();

delay(100);

}

}

return 0;

}

Code Explanation

unsigned char code_H[20] =

{0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff};

unsigned char code_L[20] =

{0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf

7,0xef,0xdf,0xbf,0x7f};

The array code_H represents the elements of the LED dot matrix row, and the array

code_L refers to the elements of the column. When characters are displayed, an

element in row and one in column are acquired and assigned to the two HC595 chips

respectively. Thus a pattern is shown on the LED dot matrix.

Take the first number of code_H, 0x01 and the first number of code_L, 0x00

as examples.

0x01 converted to binary becomes 00000001; 0x00 converted to binary becomes

0000 0000.

In this kit, common anode LED dot matrix display is applied, so only the eight LEDs

in the eighth row light up.

When the conditions that code H is 0xff and code_L is 0x7f are met simultaneously,

these 8 LEDs in the first column are lit.

9.LED_Dot_Matrix

void hc595_in(unsigned char dat){

int i;

for(i=0;i<8;i++){

digitalWrite(SDI, 0x80 & (dat << i));

digitalWrite(SRCLK, 1);

delay(1);

digitalWrite(SRCLK, 0);

}

}

Write the value of dat to pin SDI of the HC595 bit by bit. SRCLK's initial value was

set to 0, and here it's set to 1, which is to generate a rising edge pulse, then shift

the pinSDI(DS) date to shift register.

void hc595_out(){

digitalWrite(RCLK, 1);

delay(1);

digitalWrite(RCLK, 0);

}

RCLK's initial value was set to 0, and here it's set to 1, which is to generate a

rising edge, then shift data from shift register to storage register.

9.LED_Dot_Matrix

while(1){

for(i=0;i<sizeof(code_H);i++){

hc595_in(code_L[i]);

hc595_in(code_H[i]);

hc595_out();

delay(100);

}

In this loop, these 20 elements in the two arrays, code_L and code_H will be uploaded

to the two 74HC595 chip one by one. Then call the function, hc595_out() to shift data

from shift register to storage register.

For Python Language Users

Step 5: Get into the folder of code.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 6: Run.

sudo python3 9.LED_Dot_Matrix.py

After the code runs, the LED dot matrix lights up and out row by row and column by

column.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

import RPi.GPIO as GPIO

import time

SDI = 17

RCLK = 18

SRCLK = 27

9.LED_Dot_Matrix

we use BX matrix, ROW for anode, and COL for cathode

ROW ++++

code_H =

[0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff]

COL ----

code_L =

[0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf

7,0xef,0xdf,0xbf,0x7f]

def setup():

GPIO.setmode(GPIO.BCM) # Number GPIOs by its BCM location

GPIO.setup(SDI, GPIO.OUT)

GPIO.setup(RCLK, GPIO.OUT)

GPIO.setup(SRCLK, GPIO.OUT)

GPIO.output(SDI, GPIO.LOW)

GPIO.output(RCLK, GPIO.LOW)

GPIO.output(SRCLK, GPIO.LOW)

Shift the data to 74HC595

def hc595_shift(dat):

for bit in range(0, 8):

GPIO.output(SDI, 0x80 & (dat << bit))

GPIO.output(SRCLK, GPIO.HIGH)

time.sleep(0.001)

GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)

time.sleep(0.001)

9.LED_Dot_Matrix

GPIO.output(RCLK, GPIO.LOW)

def main():

while True:

for i in range(0, len(code_H)):

hc595_shift(code_L[i])

hc595_shift(code_H[i])

time.sleep(0.1)

for i in range(len(code_H)-1, -1, -1):

hc595_shift(code_L[i])

hc595_shift(code_H[i])

time.sleep(0.1)

def destroy():

GPIO.cleanup()

if __name__ == '__main__':

setup()

try:

main()

except KeyboardInterrupt:

destroy()

Code Explanation

code_H =

[0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff]

code_L =

[0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf

9.LED_Dot_Matrix

7,0xef,0xdf,0xbf,0x7f]

The array code_H represents the elements of the matix row, and the array code_L

refers to the elements of the column. When characters are displayed, an element in

row and one in column are acquired and assigned to the two HC595 chips

respectively. Thus a pattern is shown on the LED dot matrix.

Take the first number of code_H, 0x01 and the first number of code_L, 0x00

as examples.

0x01 converted to binary becomes 00000001; 0x00 converted to binary becomes

0000 0000.

In this kit, common anode LED dot matrix is applied, so only the eight LEDs in

the eighth row light up.

When the conditions that code H is 0xff and code_L is 0x7f are met simultaneously,

these 8 LEDs in the first column are lit.

for i in range(0, len(code_H)):

hc595_shift(code_L[i])

hc595_shift(code_H[i])

time.sleep(0.1)

In this loop, these 20 elements in the two arrays, code_L and code_H will be

uploaded to the HC595 chip one by one.

9.LED_Dot_Matrix

Phenomenon Picture

	Introduction
	As the name suggests, an LED dot matrix is a matri
	Hardware Required
	Principle
	LED Dot Matrix
	Generally, LED dot matrix can be categorized into
	and common anode (CA). They look much alike, but i
	See the figure below. The pins are arranged at the
	label side for reference: pins on this end are pin
	The external view:
	Below the figures show their internal structure. Y
	ROW represents the anode of the LED, and COL is ca
	One thing in common: for both types, pin 13, 3, 4,
	when pin 9, 14, 8, 12, 1, 7, 2, and 5 are all ROW.
	Consider the following figures for better understa
	The internal view:
	Pin numbering corresponding to the above rows and
	COL
	1
	2
	3
	4
	5
	6
	7
	8
	Pin No.
	13
	3
	4
	10
	6
	11
	15
	16
	ROW
	1
	2
	3
	4
	5
	6
	7
	8
	Pin No.
	9
	14
	8
	12
	1
	7
	2
	5
	In addition, two 74HC595 chips are used here. One
	Since the wiring is complicated, let's make it ste
	Note: In the Fritzing image above, the side with l
	Step 2:
	Connect pin 11 of the two 74HC595 together, and th
	Step 3:
	The 74HC595 on the right side is to control column
	74HC595
	Q0
	Q1
	Q2
	Q3
	Q4
	Q5
	Q6
	Q7
	LED Dot Matrix
	13
	3
	4
	10
	6
	11
	15
	16
	Step 4:
	74HC595
	Q0
	Q1
	Q2
	Q3
	Q4
	Q5
	Q6
	Q7
	LED Dot Matrix
	9
	14
	8
	12
	1
	7
	2
	5
	For C Language Users

	Step 5: Go to the folder of code.
	Step 6: Compile.
	Step 7: Run.
	Code
	}
	Code Explanation
	For Python Language Users

	Step 5: Get into the folder of code.
	Step 6: Run.
	Code
	 destroy()
	Code Explanation
	Phenomenon Picture

